modeles
This module defines models and solvers for 4D-VarNet.
4D-VarNet is a framework for solving inverse problems in data assimilation using deep learning and PyTorch Lightning.
Classes:
Name | Description |
---|---|
Lit4dVarNet |
A PyTorch Lightning module for training and testing 4D-VarNet models. |
GradSolver |
A gradient-based solver for optimization in 4D-VarNet. |
ConvLstmGradModel |
A convolutional LSTM model for gradient modulation. |
BaseObsCost |
A base class for observation cost computation. |
BilinAEPriorCost |
A prior cost model using bilinear autoencoders. |
BaseObsCost
Bases: Module
A base class for computing observation cost.
Attributes:
Name | Type | Description |
---|---|---|
w |
float
|
Weight for the observation cost. |
Source code in ocean4dvarnet/models.py
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 |
|
__init__(w=1)
Initialize the BaseObsCost module.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
w
|
float
|
Weight for the observation cost. Defaults to 1. |
1
|
Source code in ocean4dvarnet/models.py
448 449 450 451 452 453 454 455 456 |
|
forward(state, batch)
Compute the observation cost.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state
|
Tensor
|
The current state tensor. |
required |
batch
|
dict
|
The input batch containing data. |
required |
Returns:
Type | Description |
---|---|
torch.Tensor: The computed observation cost. |
Source code in ocean4dvarnet/models.py
458 459 460 461 462 463 464 465 466 467 468 469 470 |
|
BilinAEPriorCost
Bases: Module
A prior cost model using bilinear autoencoders.
Attributes:
Name | Type | Description |
---|---|---|
bilin_quad |
bool
|
Whether to use bilinear quadratic terms. |
conv_in |
Conv2d
|
Convolutional layer for input. |
conv_hidden |
Conv2d
|
Convolutional layer for hidden states. |
bilin_1 |
Conv2d
|
Bilinear layer 1. |
bilin_21 |
Conv2d
|
Bilinear layer 2 (part 1). |
bilin_22 |
Conv2d
|
Bilinear layer 2 (part 2). |
conv_out |
Conv2d
|
Convolutional layer for output. |
down |
Module
|
Downsampling layer. |
up |
Module
|
Upsampling layer. |
Source code in ocean4dvarnet/models.py
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 |
|
__init__(dim_in, dim_hidden, kernel_size=3, downsamp=None, bilin_quad=True)
Initialize the BilinAEPriorCost module.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dim_in
|
int
|
Number of input dimensions. |
required |
dim_hidden
|
int
|
Number of hidden dimensions. |
required |
kernel_size
|
int
|
Kernel size for convolutions. Defaults to 3. |
3
|
downsamp
|
int
|
Downsampling factor. Defaults to None. |
None
|
bilin_quad
|
bool
|
Whether to use bilinear quadratic terms. Defaults to True. |
True
|
Source code in ocean4dvarnet/models.py
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 |
|
forward(state)
Compute the prior cost using the autoencoder.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state
|
Tensor
|
The current state tensor. |
required |
Returns:
Type | Description |
---|---|
torch.Tensor: The computed prior cost. |
Source code in ocean4dvarnet/models.py
555 556 557 558 559 560 561 562 563 564 565 |
|
forward_ae(x)
Perform the forward pass through the autoencoder.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
Input tensor. |
required |
Returns:
Type | Description |
---|---|
torch.Tensor: Output tensor after passing through the autoencoder. |
Source code in ocean4dvarnet/models.py
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 |
|
ConvLstmGradModel
Bases: Module
A convolutional LSTM model for gradient modulation.
Attributes:
Name | Type | Description |
---|---|---|
dim_hidden |
int
|
Number of hidden dimensions. |
gates |
Conv2d
|
Convolutional gates for LSTM. |
conv_out |
Conv2d
|
Output convolutional layer. |
dropout |
Dropout
|
Dropout layer. |
down |
Module
|
Downsampling layer. |
up |
Module
|
Upsampling layer. |
Source code in ocean4dvarnet/models.py
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
|
__init__(dim_in, dim_hidden, kernel_size=3, dropout=0.1, downsamp=None)
Initialize the ConvLstmGradModel.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dim_in
|
int
|
Number of input dimensions. |
required |
dim_hidden
|
int
|
Number of hidden dimensions. |
required |
kernel_size
|
int
|
Kernel size for convolutions. Defaults to 3. |
3
|
dropout
|
float
|
Dropout rate. Defaults to 0.1. |
0.1
|
downsamp
|
int
|
Downsampling factor. Defaults to None. |
None
|
Source code in ocean4dvarnet/models.py
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
|
forward(x)
Perform the forward pass of the LSTM.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
Input tensor. |
required |
Returns:
Type | Description |
---|---|
torch.Tensor: Output tensor. |
Source code in ocean4dvarnet/models.py
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
|
reset_state(inp)
Reset the internal state of the LSTM.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inp
|
Tensor
|
Input tensor to determine state size. |
required |
Source code in ocean4dvarnet/models.py
393 394 395 396 397 398 399 400 401 402 403 404 405 |
|
GradSolver
Bases: Module
A gradient-based solver for optimization in 4D-VarNet.
Attributes:
Name | Type | Description |
---|---|---|
prior_cost |
Module
|
The prior cost function. |
obs_cost |
Module
|
The observation cost function. |
grad_mod |
Module
|
The gradient modulation model. |
n_step |
int
|
Number of optimization steps. |
lr_grad |
float
|
Learning rate for gradient updates. |
lbd |
float
|
Regularization parameter. |
Source code in ocean4dvarnet/models.py
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
|
__init__(prior_cost, obs_cost, grad_mod, n_step, lr_grad=0.2, lbd=1.0, **kwargs)
Initialize the GradSolver.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
prior_cost
|
Module
|
The prior cost function. |
required |
obs_cost
|
Module
|
The observation cost function. |
required |
grad_mod
|
Module
|
The gradient modulation model. |
required |
n_step
|
int
|
Number of optimization steps. |
required |
lr_grad
|
float
|
Learning rate for gradient updates. Defaults to 0.2. |
0.2
|
lbd
|
float
|
Regularization parameter. Defaults to 1.0. |
1.0
|
Source code in ocean4dvarnet/models.py
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
|
forward(batch)
Perform the forward pass of the solver.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch
|
dict
|
Input batch containing data. |
required |
Returns:
Type | Description |
---|---|
torch.Tensor: Final optimized state. |
Source code in ocean4dvarnet/models.py
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
|
init_state(batch, x_init=None)
Initialize the state for optimization.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch
|
dict
|
Input batch containing data. |
required |
x_init
|
Tensor
|
Initial state. Defaults to None. |
None
|
Returns:
Type | Description |
---|---|
torch.Tensor: Initialized state. |
Source code in ocean4dvarnet/models.py
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
|
solver_step(state, batch, step)
Perform a single optimization step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state
|
Tensor
|
Current state. |
required |
batch
|
dict
|
Input batch containing data. |
required |
step
|
int
|
Current optimization step. |
required |
Returns:
Type | Description |
---|---|
torch.Tensor: Updated state. |
Source code in ocean4dvarnet/models.py
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
|
Lit4dVarNet
Bases: LightningModule
A PyTorch Lightning module for training and testing 4D-VarNet models.
Attributes:
Name | Type | Description |
---|---|---|
solver |
GradSolver
|
The solver used for optimization. |
rec_weight |
Tensor
|
Reconstruction weight for loss computation. |
opt_fn |
callable
|
Function to configure the optimizer. |
test_metrics |
dict
|
Dictionary of test metrics. |
pre_metric_fn |
callable
|
Preprocessing function for metrics. |
norm_stats |
tuple
|
Normalization statistics (mean, std). |
persist_rw |
bool
|
Whether to persist reconstruction weight as a buffer. |
Source code in ocean4dvarnet/models.py
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
|
norm_stats
property
Retrieve normalization statistics (mean, std).
Returns:
Name | Type | Description |
---|---|---|
tuple |
Normalization statistics (mean, std). |
test_quantities
property
Retrieve the names of test quantities.
Returns:
Name | Type | Description |
---|---|---|
list |
List of test quantity names. |
__init__(solver, rec_weight, opt_fn, test_metrics=None, pre_metric_fn=None, norm_stats=None, persist_rw=True)
Initialize the Lit4dVarNet module.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
solver
|
GradSolver
|
The solver used for optimization. |
required |
rec_weight
|
ndarray
|
Reconstruction weight for loss computation. |
required |
opt_fn
|
callable
|
Function to configure the optimizer. |
required |
test_metrics
|
dict
|
Dictionary of test metrics. |
None
|
pre_metric_fn
|
callable
|
Preprocessing function for metrics. |
None
|
norm_stats
|
tuple
|
Normalization statistics (mean, std). |
None
|
persist_rw
|
bool
|
Whether to persist reconstruction weight as a buffer. |
True
|
Source code in ocean4dvarnet/models.py
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
|
base_step(batch, phase='')
Perform the base step for loss computation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch
|
dict
|
Input batch. |
required |
phase
|
str
|
Phase ("train" or "val"). |
''
|
Returns:
Name | Type | Description |
---|---|---|
tuple |
Loss and output tensor. |
Source code in ocean4dvarnet/models.py
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
|
configure_optimizers()
Configure the optimizer.
Returns:
Type | Description |
---|---|
torch.optim.Optimizer: Optimizer instance. |
Source code in ocean4dvarnet/models.py
177 178 179 180 181 182 183 184 |
|
forward(batch)
Forward pass through the solver.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch
|
dict
|
Input batch. |
required |
Returns:
Type | Description |
---|---|
torch.Tensor: Solver output. |
Source code in ocean4dvarnet/models.py
123 124 125 126 127 128 129 130 131 132 133 |
|
on_test_epoch_end()
Perform actions at the end of the test epoch.
This includes logging metrics and saving test data.
Source code in ocean4dvarnet/models.py
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
|
step(batch, phase='')
Perform a single step for training or validation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch
|
dict
|
Input batch. |
required |
phase
|
str
|
Phase ("train" or "val"). |
''
|
Returns:
Name | Type | Description |
---|---|---|
tuple |
Loss and output tensor. |
Source code in ocean4dvarnet/models.py
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
|
test_step(batch, batch_idx)
Perform a single test step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch
|
dict
|
Input batch. |
required |
batch_idx
|
int
|
Batch index. |
required |
Source code in ocean4dvarnet/models.py
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
|
training_step(batch, batch_idx)
Perform a single training step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch
|
dict
|
Input batch. |
required |
batch_idx
|
int
|
Batch index. |
required |
Returns:
Type | Description |
---|---|
torch.Tensor: Training loss. |
Source code in ocean4dvarnet/models.py
97 98 99 100 101 102 103 104 105 106 107 108 |
|
validation_step(batch, batch_idx)
Perform a single validation step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch
|
dict
|
Input batch. |
required |
batch_idx
|
int
|
Batch index. |
required |
Returns:
Type | Description |
---|---|
torch.Tensor: Validation loss. |
Source code in ocean4dvarnet/models.py
110 111 112 113 114 115 116 117 118 119 120 121 |
|
weighted_mse(err, weight)
staticmethod
Compute the weighted mean squared error.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
err
|
Tensor
|
Error tensor. |
required |
weight
|
Tensor
|
Weight tensor. |
required |
Returns:
Type | Description |
---|---|
torch.Tensor: Weighted MSE loss. |
Source code in ocean4dvarnet/models.py
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
|