data
This module provides data handling utilities for 4D-VarNet models.
It includes classes and functions for creating datasets, augmenting data, managing data loading pipelines, and reconstructing data from patches. These utilities are designed to work seamlessly with PyTorch and xarray, enabling efficient data preprocessing and loading for machine learning tasks.
Classes:
Name | Description |
---|---|
- XrDataset |
A PyTorch Dataset for extracting patches from xarray.DataArray objects. |
- XrConcatDataset |
A concatenation of multiple XrDatasets. |
- AugmentedDataset |
A dataset wrapper for applying data augmentation. |
- BaseDataModule |
A PyTorch Lightning DataModule for managing datasets and data loaders. |
- ConcatDataModule |
A DataModule for combining datasets from multiple domains. |
- RandValDataModule |
A DataModule for random splitting of training data into training and validation sets. |
Raises:
Type | Description |
---|---|
-IncompleteScanConfiguration
|
Raised when the scan configuration does not cover the entire domain. |
-DangerousDimOrdering
|
Raised when the dimension ordering of the input data is incorrect. |
Key Features
- Patch extraction: Efficiently extract patches from large xarray.DataArray objects for training.
- Data augmentation: Support for augmenting datasets with noise and transformations.
- Reconstruction: Reconstruct the original data from extracted patches.
- Seamless integration: Designed to work with PyTorch Lightning for streamlined training pipelines.
AugmentedDataset
Bases: Dataset
A dataset that applies data augmentation to an input dataset.
Attributes:
Name | Type | Description |
---|---|---|
inp_ds |
Dataset
|
The input dataset. |
aug_factor |
int
|
The number of augmented copies to generate. |
aug_only |
bool
|
Whether to include only augmented data. |
noise_sigma |
float
|
Standard deviation of noise to add to augmented data. |
Source code in ocean4dvarnet/data.py
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
|
__getitem__(idx)
Get an item from the dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
idx
|
int
|
Index of the item. |
required |
Returns:
Name | Type | Description |
---|---|---|
TrainingItem |
The requested item. |
Source code in ocean4dvarnet/data.py
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
|
__init__(inp_ds, aug_factor, aug_only=False, noise_sigma=None)
Initialize the AugmentedDataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inp_ds
|
Dataset
|
The input dataset. |
required |
aug_factor
|
int
|
The number of augmented copies to generate. |
required |
aug_only
|
bool
|
Whether to include only augmented data. |
False
|
noise_sigma
|
float
|
Standard deviation of noise to add to augmented data. |
None
|
Source code in ocean4dvarnet/data.py
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
|
__len__()
Return the total number of items in the dataset.
Returns:
Name | Type | Description |
---|---|---|
int |
Total number of items. |
Source code in ocean4dvarnet/data.py
307 308 309 310 311 312 313 314 |
|
BaseDataModule
Bases: LightningDataModule
A base data module for managing datasets and data loaders in PyTorch Lightning.
Attributes:
Name | Type | Description |
---|---|---|
input_da |
DataArray
|
The input data array. |
domains |
dict
|
Dictionary of domain splits (train, val, test). |
xrds_kw |
dict
|
Keyword arguments for XrDataset. |
dl_kw |
dict
|
Keyword arguments for DataLoader. |
aug_kw |
dict
|
Keyword arguments for AugmentedDataset. |
norm_stats |
tuple
|
Normalization statistics (mean, std). |
Source code in ocean4dvarnet/data.py
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 |
|
__init__(input_da, domains, xrds_kw, dl_kw, aug_kw=None, norm_stats=None, **kwargs)
Initialize the BaseDataModule.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_da
|
DataArray
|
The input data array. |
required |
domains
|
dict
|
Dictionary of domain splits (train, val, test). |
required |
xrds_kw
|
dict
|
Keyword arguments for XrDataset. |
required |
dl_kw
|
dict
|
Keyword arguments for DataLoader. |
required |
aug_kw
|
dict
|
Keyword arguments for AugmentedDataset. |
None
|
norm_stats
|
tuple
|
Normalization statistics (mean, std). |
None
|
Source code in ocean4dvarnet/data.py
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
|
norm_stats()
Compute or retrieve normalization statistics (mean, std).
Returns:
Name | Type | Description |
---|---|---|
tuple |
Normalization statistics (mean, std). |
Source code in ocean4dvarnet/data.py
386 387 388 389 390 391 392 393 394 395 396 |
|
post_fn()
Create a post-processing function for normalizing data.
Returns:
Name | Type | Description |
---|---|---|
callable |
Post-processing function. |
Source code in ocean4dvarnet/data.py
411 412 413 414 415 416 417 418 419 420 421 422 423 424 |
|
setup(stage='test')
Set up the datasets for training, validation, and testing.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
stage
|
str
|
Stage of the setup ('train', 'val', 'test'). |
'test'
|
Source code in ocean4dvarnet/data.py
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
|
test_dataloader()
Create a DataLoader for the testing dataset.
Returns:
Name | Type | Description |
---|---|---|
DataLoader |
Testing DataLoader. |
Source code in ocean4dvarnet/data.py
466 467 468 469 470 471 472 473 |
|
train_dataloader()
Create a DataLoader for the training dataset.
Returns:
Name | Type | Description |
---|---|---|
DataLoader |
Training DataLoader. |
Source code in ocean4dvarnet/data.py
448 449 450 451 452 453 454 455 |
|
train_mean_std(variable='tgt')
Compute the mean and standard deviation of the training data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
variable
|
str
|
Variable to compute statistics for. |
'tgt'
|
Returns:
Name | Type | Description |
---|---|---|
tuple |
Mean and standard deviation. |
Source code in ocean4dvarnet/data.py
398 399 400 401 402 403 404 405 406 407 408 409 |
|
val_dataloader()
Create a DataLoader for the validation dataset.
Returns:
Name | Type | Description |
---|---|---|
DataLoader |
Validation DataLoader. |
Source code in ocean4dvarnet/data.py
457 458 459 460 461 462 463 464 |
|
ConcatDataModule
Bases: BaseDataModule
A data module for concatenating datasets from multiple domains.
Source code in ocean4dvarnet/data.py
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 |
|
setup(stage='test')
Set up the datasets for training, validation, and testing.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
stage
|
str
|
Stage of the setup ('train', 'val', 'test'). |
'test'
|
Source code in ocean4dvarnet/data.py
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 |
|
train_mean_std()
Compute the mean and standard deviation of the training data across domains.
Returns:
Name | Type | Description |
---|---|---|
tuple |
Mean and standard deviation. |
Source code in ocean4dvarnet/data.py
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 |
|
DangerousDimOrdering
Bases: Exception
Exception raised when the dimension ordering of the input data is incorrect.
Source code in ocean4dvarnet/data.py
44 45 46 |
|
IncompleteScanConfiguration
Bases: Exception
Exception raised when the scan configuration does not cover the entire domain.
Source code in ocean4dvarnet/data.py
39 40 41 |
|
RandValDataModule
Bases: BaseDataModule
A data module that randomly splits the training data into training and validation sets.
Attributes:
Name | Type | Description |
---|---|---|
val_prop |
float
|
Proportion of data to use for validation. |
Source code in ocean4dvarnet/data.py
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 |
|
__init__(val_prop, *args, **kwargs)
Initialize the RandValDataModule.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
val_prop
|
float
|
Proportion of data to use for validation. |
required |
Source code in ocean4dvarnet/data.py
536 537 538 539 540 541 542 543 544 |
|
setup(stage='test')
Set up the datasets for training, validation, and testing.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
stage
|
str
|
Stage of the setup ('train', 'val', 'test'). |
'test'
|
Source code in ocean4dvarnet/data.py
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 |
|
XrConcatDataset
Bases: ConcatDataset
A concatenation of multiple XrDatasets.
This class allows combining multiple datasets into one for training or evaluation.
Source code in ocean4dvarnet/data.py
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
|
reconstruct(batches, weight=None)
Reconstruct the original data arrays from batches.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batches
|
list
|
List of batches. |
required |
weight
|
ndarray
|
Weighting for overlapping patches. |
None
|
Returns:
Name | Type | Description |
---|---|---|
list |
List of reconstructed xarray.DataArray objects. |
Source code in ocean4dvarnet/data.py
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
|
XrDataset
Bases: Dataset
A PyTorch Dataset based on an xarray.DataArray with on-the-fly slicing.
This class allows efficient extraction of patches from an xarray.DataArray for training machine learning models.
Usage
If you want to be able to reconstruct the input, the input xr.DataArray should: - Have coordinates. - Have the last dims correspond to the patch dims in the same order. - Have, for each dim of patch_dim, (size(dim) - patch_dim(dim)) divisible by stride(dim).
The batches passed to self.reconstruct should: - Have the last dims correspond to the patch dims in the same order.
Attributes:
Name | Type | Description |
---|---|---|
da |
DataArray
|
The input data array. |
patch_dims |
dict
|
Dimensions and sizes of patches to extract. |
domain_limits |
dict
|
Limits for selecting a subset of the domain. |
strides |
dict
|
Strides for patch extraction. |
check_full_scan |
bool
|
Whether to check if the entire domain is scanned. |
check_dim_order |
bool
|
Whether to check the dimension ordering. |
postpro_fn |
callable
|
A function for post-processing extracted patches. |
Source code in ocean4dvarnet/data.py
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
|
__getitem__(item)
Get a specific patch by index.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
item
|
int
|
Index of the patch. |
required |
Returns:
Type | Description |
---|---|
Patch data or coordinates, depending on the mode. |
Source code in ocean4dvarnet/data.py
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
|
__init__(da, patch_dims, domain_limits=None, strides=None, check_full_scan=False, check_dim_order=False, postpro_fn=None)
Initialize the XrDataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
da
|
DataArray
|
Input data, with patch dims at the end in the dim orders |
required |
patch_dims
|
dict
|
da dimension and sizes of patches to extract. |
required |
domain_limits
|
dict
|
da dimension slices of domain, to Limits for selecting a subset of the domain. for patch extractions |
None
|
strides
|
dict
|
dims to strides size for patch extraction.(default to one) |
None
|
check_full_scan
|
bool
|
if True raise an error if the whole domain is not scanned by the patch. |
False
|
check_dim_order
|
bool
|
Whether to check the dimension ordering. |
False
|
postpro_fn
|
callable
|
A function for post-processing extracted patches. |
None
|
Source code in ocean4dvarnet/data.py
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
|
__iter__()
Iterate over the dataset.
Yields:
Type | Description |
---|---|
Patch data for each index. |
Source code in ocean4dvarnet/data.py
143 144 145 146 147 148 149 150 151 |
|
__len__()
Return the total number of patches in the dataset.
Returns:
Name | Type | Description |
---|---|---|
int |
Number of patches. |
Source code in ocean4dvarnet/data.py
131 132 133 134 135 136 137 138 139 140 141 |
|
get_coords()
Get the coordinates of all patches in the dataset.
Returns:
Name | Type | Description |
---|---|---|
list |
List of coordinates for each patch. |
Source code in ocean4dvarnet/data.py
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
|
reconstruct(batches, weight=None)
Reconstruct the original data array from patches.
Takes as input a list of np.ndarray of dimensions (b, , patch_dims).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batches
|
list
|
List of patches (torch tensor) corresponding to batches without shuffle. |
required |
weight
|
ndarray
|
Tensor of size patch_dims corresponding to the weight of a prediction depending on the position on the patch (default to ones everywhere). Overlapping patches will be averaged with weighting. |
None
|
Returns:
Type | Description |
---|---|
xarray.DataArray: Reconstructed data array. A stitched xarray.DataArray with the coords of patch_dims. |
Source code in ocean4dvarnet/data.py
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
|
reconstruct_from_items(items, weight=None)
Reconstruct the original data array from individual items.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
items
|
list
|
List of individual patches. |
required |
weight
|
ndarray
|
Weighting for overlapping patches. |
None
|
Returns:
Type | Description |
---|---|
xarray.DataArray: Reconstructed data array. |
Source code in ocean4dvarnet/data.py
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
|