Introductory course on Deep Learning for Ocean and Atmosphere Sciences

Pre-requisites: basics in math., statistics and Python programming

Detailed program

Day #1, 9.30am-12.30pm Introduction to Deep Learning • What's learning ? • MLP / backprop • Practice on toy regression/classification examples	Day #1, 2.00pm-5.30pm Project session #1: • Project selection • Learning-based problem formulation • Exploratory analysis/visualization of the considered dataset
Day #2, 9.30am-12.30pm Convolutional Neural Networks • From MLP to CNN • Deep Learning methodology • Practice on MNIST digit classification	Day #2, 2.00pm-5.30pm Project session #2: • Tutorial on PyTorch Lighning • Selection of neural architectures • Design of the training scheme
 Day #3, 9.30am-12.30pm Auto-encoders and Generative models Auto-encoder architectures (Dense AEs/PCA, Convolutional AEs, U-Net) Practice on MNIST dataset Opening towards generative models: VAE, NF, GAN 	Day #3, 2.00pm-5.30pm Project session #3: • First results for a simple architecture • Sensitivity analysis • Updated architectures
Day #4, 9.30am-12.30pm Recurrent Neural Networks • RNN / LSTM • Neural ODE / PINN • Practice on L63 system	 Day #4, 2.00pm-5.30pm Project session #4: Optimization of the architecture Synthesis of the experiments, incl. the benchmarking of several architectures
 Day #5, 9.30am-12.30pm Deep Learning and Inverse Problems DL, AutoDiff and minimization Deep inverse models Deep unfolded architectures Practice on L63 system 	 Day #5, 2.00pm-5.30pm Project session #5: Presentation for each project (10'+5' for each project)

Preliminary lists of project themes:

- Data-driven discovery of governing equations
- Space-time interpolation of satellite-derived geophysical fields
- Short-term forecasting of space-time dynamics
- Downscaling of space-time geophysical dynamics
- Classification and segmentation from 2D geophysical fields