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Eodyn

funded in 2015

exploit AIS data streams to produce current fields
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AIS data streams

Figure: screenshot from http://www.marinetraffic.com

mainly used to avoid collision

an AIS message typically contains : MMSI number, GPS position,
GPS speed, manoeuver status, and sometimes heading of boats
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Linear model of observation

Speed over ground = speed on surface + current

we can derive for each pixel of the grid the following
cos(θ1) 0 ... 0 1 0
sin(θ1) 0 ... 0 0 1
... ... ... ... ... ..
0 0 ... cos(θn) 1 0
0 0 ... sin(θn) 0 1

 .
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 =
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Ax = y where A ∈M2n×n+2, x ∈ R2n+2 and y ∈ R2n.

least square estimator :

argminJ(x , y) = ‖Ax − y‖2
2 = (AAt)−1Ay (1)
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a ill-posed problem in the sense of Hadamard

for 1 pixel : no existence and uniqueness of solutions under the linear
model

sparse observations

we need to add a regularization term :

X ∗ = arg min
X

J(X ,Y ) + R(X ) (2)
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a ill-posed problem in the sense of Hadamard

Figure: source : presentation by Clément Legoff
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A priori knowledge

current fields are structured objects ⊂M ( manifold hypothesis)

XT and XT+1 should be ”close”
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generative modeling : VAEs
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generative modeling : VAEs

VAE (kingma et al 2014) learns both : parsimonious representations of
data and a lower bound on data likelihood.

let X = {xi} a dataset of i.i.d samples seen as realization of random
process involving latent variables, zi , i.e pθ(z |x).

we train VAE by minimizing the following loss

L(x , θ) = Eqθ(z|x)[log(pθ(xi |z)]− KL(qθ(z |xi )||p(z))

−L(x , θ) is a lower bound on data likelihood
with p(z) ∼ N (0, Ik), the KL term enforce latent variable to be centered

on the unit ball.
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Variational auto-encoders
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Example : graph of reconstruction loss associated to an
AE

Encoding ”IMT” in 1d using a MLP
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generative models as non-linear dictionary for inverse
problems solving

Idea : restrict the possible solutions to the image of the decoder.
associated optimization problems :

Z ∗ = arg min J(Φ(Z ),Y ) + R(Z ,Φ(Z )) (3)

we define a projection operator as the result of a gradient descent process:
z0 = 0, zk+1 = zk − λ∇(J(φ(Zk),Y ) + R(Z ,Φ(Z ))

i.e : we’re looking at stable points of :{
z ′(t) = −(J(Φ(Z ),Y ) + R(Z ,Φ(Z )))
z(0) = z0

(4)

Remark : if Φ1 and Φ2 denotes two C 1 NN with Im(Φ1) = Im(Φ2).
gradient flows can be 6= but shares the same zeros.
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regularization by dimension reduction

Regularizing effect : solution of (3) invariant under a class of deformations
:

example with PCA decoder:
min J(Proj(X),Y) = min J(Φ(z),Y). and we have :

Figure: projection on affine subspace

I (x) = {f /Proj(f (x)) = Proj(x)} is big (restriction to invertible
tranformation = group structure)

Ox = {y = f (x)/f ∈ I (x)} is the affine subspace ⊥ Im(Φ) which contains
x .
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regularization by dimension reduction : non linear case

suppose Diff Φ Lischitz, associated flow is differentiable but its differential
is not full rank (≤ dim latent space).

I (x) = {f /Proj(f (x)) = Proj(x)} contains diffeomorphisms.

displacement along Ox can be done using infinitesimal displacement
alongside tangent plane ⊥ Im(Diff (Φ)).

Remark : it’s not really a projection if Im(Φ) is a non-convex set...
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sensibility to latent representation

We compute a gradient flow on a latent space, not on the projected
manifold

there is a way to construct an algorithms invariant by training for two
neural networks that satisfies Im(Φ1) = Im(Φ2) using Gram-schmidt

algorithm on tangent planes (slow).
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Resnet and neural ODEs

xk+1 = xk + ∆tNN(x) (5)

interpretation of residual networks architectures as numerical integration
scheme (euler, rk4...) of the following cauchy problems.

{
x ′(t) = NN(x(t))
x(0) = x0

(6)

learning as an optimal control problem : recent approach allows us to
compute the adjoint.
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proposed approach

joint learning of representation and dynamical systems while solving the
targeted inverse problem:

minimize the loss :

U∗, θ∗ = arg min
X

J(U,Y ) + R(U, θ) (7)

w .r .t

 U(., t) = Φ(Z̃ (t))
Z ′(t) = f (Z (t))
Z (0) = Z0

(8)

and

R(U) := λULVAE (U, θ) + λVLVAE (V , θ)

V denotes an external dataset of representations, for the experiment we
used the assimilated product GLORYS.
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proposed approach : how to learn the dynamical system ?

current fields time-series stated as decoded latent variable that follow an
ODE. this system can not be seen as autonomous, it depends from

unobservered states.

Figure: Learning Latent Dynamics for Partially-Observed Chaotic Systems
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training

Figure: AIS message density on

focus on aghulas current. year 2016, 4 millions of AIS messages.
External representations : GLORYS time series of current field from
1993 to july 2015.

time integration windows : 8 days.
latent space dim = 50 + 10.

original dimension of the optimization problem : 1.2 ∗ 105
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results

validation with a dataset of drifting buyos. 3 periods :

a first period from 01/01 to 03/20 (summer)

a second period from 04/09 to 06/28 (transition autumn-winter)

a third period from 06/29 to 09/16 (winter)

Table: Reconstruction performance evaluate from independent in situ data

Data Method summerautumn winter

Satellite
altime-
try

OI 0.1580 0.1374 0.0513

AIS OI 0.1041 0.1739 0.2017

AIS VAE-NODE
networks

0.0609 0.1148 0.0616
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plots

Figure: Reconstructed velocity fields for January 16th 2016 for the altimetry (top,
right) and AIS baselines (top left) and the two configurations of the proposed
framework with (bottom right) and without (bottom left) the use of GLORYS
data in the training phase.
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daily RMSE on a 180 day assimilation

Figure: comparison between RMSE with drifting buyos
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validation on drifters
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the neural ODE framework for time interpolation

Figure: non-linear interpolation in the latent space using the Rk4 integrator

Interpolation MSE

24h 0.1148

12h 0.1091

6h 0.1016

3h 0.0919
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Future work

work on assimilation error

VAE produces ”blurry” images =¿ multi-scale models ?

using a Hemlotz decomposition on the decoder : Φ = curl(f ) +∇g
to assimilate divergent free field (such as geostrophic current) and
perform sensor fusions
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