variational learning of sea surface current reconstructions from AIS data streams

Simon Benaïchouche

variational learning of sea surface current reco

• funded in 2015

• exploit AIS data streams to produce current fields

< □ > < □ > < □ > < □ > < □ > < □ >

AIS data streams

Figure: screenshot from http://www.marinetraffic.com

- mainly used to avoid collision
- an AIS message typically contains : MMSI number, GPS position, GPS speed, manoeuver status, and sometimes heading of boats

${\sf Speed} \ {\sf over} \ {\sf ground} = {\sf speed} \ {\sf on} \ {\sf surface} + {\sf current}$

we can derive for each pixel of the grid the following $\begin{pmatrix} \cos(\theta_1) & 0 & \dots & 0 & 1 & 0 \\ \sin(\theta_1) & 0 & \dots & 0 & 0 & 1 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \cos(\theta_n) & 1 & 0 \\ 0 & 0 & \dots & \sin(\theta_n) & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} V_S 1 \\ \dots \\ U_1 \\ U_2 \end{pmatrix} = \begin{pmatrix} SOG_{1_1} \\ SOG_{2_1} \\ \dots \\ SOG_{1_n} \\ SOG_{2_n} \end{pmatrix}$ $Ax = y \text{ where } A \in \mathcal{M}^{2n \times n+2}, x \in \mathbb{R}^{2n+2} \text{ and } y \in \mathbb{R}^{2n}.$ least square estimator :

$$argminJ(x, y) = \|Ax - y\|_2^2 = (AA^t)^{-1}Ay$$
(1)

a ill-posed problem in the sense of Hadamard

- for 1 pixel : no existence and uniqueness of solutions under the linear model
- sparse observations

we need to add a regularization term :

$$X^* = \arg\min_X J(X, Y) + R(X)$$
(2)

a ill-posed problem in the sense of Hadamard

Figure: source : presentation by Clément Legoff

∃ →

- \bullet current fields are structured objects $\subset \mathcal{M}$ (manifold hypothesis)
- X_T and X_{T+1} should be "close"

э

э

< □ > < □ > < □ > < □ > < □ > < □ >

VAE (kingma et al 2014) learns both : parsimonious representations of data and a lower bound on data likelihood. let $X = \{x_i\}$ a dataset of i.i.d samples seen as realization of random process involving latent variables, z_i , i.e $p_{\theta}(z|x)$. we train VAE by minimizing the following loss

$$\mathcal{L}(x,\theta) = E_{q_{\theta}(z|x)}[log(p_{\theta}(x_i|z)] - KL(q_{\theta}(z|x_i)||p(z))$$

 $-\mathcal{L}(x,\theta)$ is a lower bound on data likelihood with $p(z) \sim \mathcal{N}(0, I_k)$, the KL term enforce latent variable to be centered on the unit ball.

A (1) < A (2) < A (2) </p>

Example : graph of reconstruction loss associated to an AE

Encoding "IMT" in 1d using a MLP

- ▲ 王 → 오 < 0

generative models as non-linear dictionary for inverse problems solving

Idea : restrict the possible solutions to the image of the decoder. associated optimization problems :

$$Z^* = \arg\min J(\Phi(Z), Y) + R(Z, \Phi(Z))$$
(3)

we define a projection operator as the result of a gradient descent process: $z_0 = 0, z_{k+1} = z_k - \lambda \nabla (J(\phi(Z_k), Y) + R(Z, \Phi(Z)))$ i.e.: we're looking at stable points of :

$$\begin{cases} z'(t) = -(J(\Phi(Z), Y) + R(Z, \Phi(Z))) \\ z(0) = z_0 \end{cases}$$
(4)

Remark : if Φ_1 and Φ_2 denotes two C^1 NN with $Im(\Phi_1) = Im(\Phi_2)$. gradient flows can be \neq but shares the same zeros.

regularization by dimension reduction

Regularizing effect : solution of (3) invariant under a class of deformations

example with PCA decoder: min
$$J(Proj(X),Y) = min J(\Phi(z),Y)$$
. and we have :

Figure: projection on affine subspace

 $I(x) = \{f/Proj(f(x)) = Proj(x)\} \text{ is big (restriction to invertible} \\ \text{tranformation} = \text{group structure}) \\ O_x = \{y = f(x)/f \in I(x)\} \text{ is the affine subspace } \perp Im(\Phi) \text{ which contains} \\ x.$

suppose Diff Φ Lischitz, associated flow is differentiable but its differential is not full rank (\leq dim latent space).

- $I(x) = \{f/Proj(f(x)) = Proj(x)\}$ contains diffeomorphisms.
- displacement along O_x can be done using infinitesimal displacement alongside tangent plane $\perp Im(Diff(\Phi))$.

Remark : it's not really a projection if $Im(\Phi)$ is a non-convex set...

We compute a gradient flow on a latent space, not on the projected manifold

Me:Mom can we have a gradient flow ? Mom : We already have Gradient Flow at home ? Gradient flow at home :

there is a way to construct an algorithms invariant by training for two neural networks that satisfies $Im(\Phi_1) = Im(\Phi_2)$ using Gram-schmidt algorithm on tangent planes (slow).

$$x_{k+1} = x_k + \Delta t NN(x) \tag{5}$$

interpretation of residual networks architectures as numerical integration scheme (euler, rk4...) of the following cauchy problems.

$$\begin{cases} x'(t) = NN(x(t)) \\ x(0) = x_0 \end{cases}$$
(6)

learning as an optimal control problem : recent approach allows us to compute the adjoint.

proposed approach

joint learning of representation and dynamical systems while solving the targeted inverse problem: minimize the loss :

$$U^*, \theta^* = \arg\min_X J(U, Y) + R(U, \theta)$$
(7)
w.r.t

$$\begin{cases} U(.,t) = \Phi(\tilde{Z}(t)) \\ Z'(t) = f(Z(t)) \\ Z(0) = Z_0 \end{cases}$$
(8)

and

$$R(U) := \lambda_U \mathcal{L}_{VAE}(U, \theta) + \lambda_V \mathcal{L}_{VAE}(V, \theta)$$

V denotes an external dataset of representations, for the experiment we used the assimilated product GLORYS.

Simon Benaïchouche

proposed approach : how to learn the dynamical system ?

current fields time-series stated as decoded latent variable that follow an ODE. this system can not be seen as autonomous, it depends from unobservered states.

Figure: Learning Latent Dynamics for Partially-Observed Chaotic Systems

training

Figure: AIS message density on

- focus on aghulas current. year 2016, 4 millions of AIS messages.
- External representations : GLORYS time series of current field from 1993 to july 2015.

time integration windows : 8 days.

```
latent space dim = 50 + 10.
```

results

validation with a dataset of drifting buyos. 3 periods :

- a first period from 01/01 to 03/20 (summer)
- a second period from 04/09 to 06/28 (transition autumn-winter)
- a third period from 06/29 to 09/16 (winter)

Table: Reconstruction performance evaluate from independent in situ data

Data	Method	summe	rautumn	winter
Satellite	OI	0.1580	0.1374	0.0513
altime-				
try				
AIS	OI	0.1041	0.1739	0.2017
AIS	VAE-NODE	0.0609	0.1148	0.0616
	networks			

Figure: Reconstructed velocity fields for January 16th 2016 for the altimetry (top, right) and AIS baselines (top left) and the two configurations of the proposed framework with (bottom right) and without (bottom left) the use of GLORYS data in the training phase.

Figure: comparison between RMSE with drifting buyos

< 行

validation on drifters

Simon Benaïchouche

23 / 26

문 문 문

the neural ODE framework for time interpolation

Figure: non-linear interpolation in the latent space using the Rk4 integrator

Interpolation	MSE
24h	0.1148
12h	0.1091
6h	0.1016
3h	0.0919

Simon Benaïchouche

variational learning of sea surface current reco

- work on assimilation error
- VAE produces "blurry" images =¿ multi-scale models ?
- using a Hemlotz decomposition on the decoder : $\Phi = curl(f) + \nabla g$ to assimilate divergent free field (such as geostrophic current) and perform sensor fusions

- Auto-encoding variational bayes Kingma et al
- Neural Ordinary differential equations Ricky T. Q. Chen et al
- Learning Latent Dynamics for Partially-Observed Chaotic Systems *S. Ouala et al*
- End-to-end learning of energy-based representations for irregularly-sampled signals and images *R. fablet et al*
- Group invariant scattering S. Mallat